999. 车的可用捕获量

题目

在一个 8 x 8 的棋盘上,有一个白色的车(Rook),用字符 'R' 表示。棋盘上还可能存在空方块,白色的象(Bishop)以及黑色的卒(pawn),分别用字符 '.''B''p' 表示。不难看出,大写字符表示的是白棋,小写字符表示的是黑棋。

车按国际象棋中的规则移动。东,西,南,北四个基本方向任选其一,然后一直向选定的方向移动,直到满足下列四个条件之一:

  • 棋手选择主动停下来。
  • 棋子因到达棋盘的边缘而停下。
  • 棋子移动到某一方格来捕获位于该方格上敌方(黑色)的卒,停在该方格内。
  • 车不能进入/越过已经放有其他友方棋子(白色的象)的方格,停在友方棋子前。

你现在可以控制车移动一次,请你统计有多少敌方的卒处于你的捕获范围内(即,可以被一步捕获的棋子数)

示例1:

1
2
3
4
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","R",".",".",".","p"],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
在本例中,车能够捕获所有的卒。

示例2:

1
2
3
4
输入:[[".",".",".",".",".",".",".","."],[".","p","p","p","p","p",".","."],[".","p","p","B","p","p",".","."],[".","p","B","R","B","p",".","."],[".","p","p","B","p","p",".","."],[".","p","p","p","p","p",".","."],[".",".",".",".",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:0
解释:
象阻止了车捕获任何卒。

示例3:

1
2
3
4
输入:[[".",".",".",".",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".","p",".",".",".","."],["p","p",".","R",".","p","B","."],[".",".",".",".",".",".",".","."],[".",".",".","B",".",".",".","."],[".",".",".","p",".",".",".","."],[".",".",".",".",".",".",".","."]]
输出:3
解释:
车可以捕获位置 b5,d6 和 f5 的卒。

提示:

  • board.length == board[i].length == 8
  • board[i][j] 可以是 ‘R’,’.’,’B’ 或 ‘p’
  • 只有一个格子上存在 board[i][j] == ‘R’

解法

解法一:

遍历四个方向,累加即可

JAVA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public int numRookCaptures(char[][] board) {
int sx = 0;
int sy = 0;
// 获取车的位置
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j--) {
if (board[i][j] == 'R') {
sx = i;
sy = j;
}
}
}

// 方向数组
int[] dx = { 0, 0, 1, -1 };
int[] dy = { 1, -1, 0, 0 };

int count = 0;
for (int i = 0; i < 4; ++i) {
for (int step = 0;; ++step) {
int tx = sx + step * dx[i];
int ty = sy + step * dy[i];
if (tx < 0 || tx >= 8 || ty < 0 || ty >= 8 || board[tx][ty] == 'B') {
break;
}
if (board[tx][ty] == 'p') {
count++;
break;
}
}
}
return count;
}
0%