1971. 寻找图中是否存在路径

题目

有一个具有 n个顶点的 双向 图,其中每个顶点标记从 0n - 1(包含 0n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。

请你确定是否存在从顶点 start 开始,到顶点 end 结束的 有效路径

给你数组 edges 和整数 nstartend,如果从 startend 存在 有效路径 ,则返回 true,否则返回 false

示例1:

1
2
3
4
5
输入:n = 3, edges = [[0,1],[1,2],[2,0]], start = 0, end = 2
输出:true
解释:存在由顶点 0 到顶点 2 的路径:
- 0 → 1 → 2
- 0 → 2

示例2:

1
2
3
输入:n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], start = 0, end = 5
输出:false
解释:不存在由顶点 0 到顶点 5 的路径.

提示:

  • 1 <= n <= 2 * 105
  • 0 <= edges.length <= 2 * 105
  • edges[i].length == 2
  • 0 <= ui, vi <= n - 1
  • ui != vi
  • 0 <= start, end <= n - 1
  • 不存在双向边
  • 不存在指向顶点自身的边

解法

解法一:

Java

1
2
3
4
5
6
7
public int numOfStrings(String[] patterns, String word) {
int count = 0;
for (String p : patterns) {
count += word.contains(p) ? 1 : 0;
}
return count;
}
0%