分布式ID生成-SnowFlake实现

分布式ID生成-SnowFlake实现

SnowFlake原理

Twitter的snowflake算法解决了分布式系统生成全局ID的需求,生成64位的Long型数字.

它是把64位分成各个部分,分别代表:

  • 第一位不使用,预留
  • 接下来的41位表示毫秒时间
  • 5位数据中心ID
  • 5位worker的ID
  • 最后12位是毫秒内的计数,12位的计数顺序号支持每个节点每毫秒产生4096个ID序列

位数分组图示

这样的好处是:毫秒数在高位,生成的ID整体上按时间趋势递增;不依赖第三方系统,稳定性和效率较高,理论上QPS约为409.6w/s(1000*2^12),并且整个分布式系统内不会产生ID碰撞;可根据自身业务灵活分配bit位。

不足就在于:强依赖机器时钟,如果时钟回拨,则可能导致生成ID重复。

SnowFlake实现

因为实现比较简单,就贴一个网友的Java版实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/**
* twitter的snowflake算法 -- java实现
*
* @author beyond
* @date 2016/11/26
*/
public class SnowFlake {

/**
* 起始的时间戳
*/
private final static long START_STMP = 1480166465631L;

/**
* 每一部分占用的位数
*/
private final static long SEQUENCE_BIT = 12; // 序列号占用的位数
private final static long MACHINE_BIT = 5; // 机器标识占用的位数
private final static long DATACENTER_BIT = 5;// 数据中心占用的位数

/**
* 每一部分的最大值
*/
private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

private long datacenterId; // 数据中心
private long machineId; // 机器标识
private long sequence = 0L; // 序列号
private long lastStmp = -1L;// 上一次时间戳

public SnowFlake(long datacenterId, long machineId) {
if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.datacenterId = datacenterId;
this.machineId = machineId;
}

/**
* 产生下一个ID
*
* @return
*/
public synchronized long nextId() {
long currStmp = getNewstmp();
if (currStmp < lastStmp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}

if (currStmp == lastStmp) {
// 相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
// 同一毫秒的序列数已经达到最大
if (sequence == 0L) {
currStmp = getNextMill();
}
} else {
// 不同毫秒内,序列号置为0
sequence = 0L;
}

lastStmp = currStmp;

return (currStmp - START_STMP) << TIMESTMP_LEFT // 时间戳部分
| datacenterId << DATACENTER_LEFT // 数据中心部分
| machineId << MACHINE_LEFT // 机器标识部分
| sequence; // 序列号部分
}

private long getNextMill() {
long mill = getNewstmp();
while (mill <= lastStmp) {
mill = getNewstmp();
}
return mill;
}

private long getNewstmp() {
return System.currentTimeMillis();
}

public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(2, 3);

for (int i = 0; i < (1 << 12); i++) {
System.out.println(snowFlake.nextId());
}

}
}

0%